Comparison of function of passive modular exoskeletons for analysis of abduction movement and horizontal abduction of the upper limb

Fumagalli MA, Pitta AJC, Emanuel PCS, Costa V and Souza CMP

Stroke is one of the biggest problems of the health system in Brazil and in the world: not only due to high health costs, but also due to the treatment that does not guarantee a complete functional recovery. About 25% of the patients do not survive, and almost half of the survivors have a functional limitation of the upper and / or lower limbs. In the human body, the skeletal structure provides mechanical support for movements. On the shoulder, we find the greatest amount of degrees of articular freedom of the body - it allows arm movements in almost all directions, as well as in different angles. Compromising any of your movements directly affects autonomy in activities of daily living. The tracking of movements of the shoulder girdle and upper limbs accompanied by biomechanical assessments in the performance of activities of daily living provides support for rehabilitation. This measurement, however, is a complex activity due to the number of interdependent joints and movements. The objective of this research is to compare the readings performed on two passive exoskeletons, which measure three-dimensionally the movement of the abduction / adduction and lateral abduction joints. To acquire the signals in the mechanical structure of the equipment, a reading system by a position sensor (encoder) is placed. The acquired signals are treated with a computational tool. The data are presented in real time, with visual feedback on joint movements. In the tests performed, the exoskeleton had no mechanical limitations that prevented the measurement of movements.